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1 Introduction

This problem was brought to my attention by Tom Rauch, W8JI, who, in his note to me, had
described his experience and correctly pointed out all the main features that govern the bandwith.
These notes are an expanded version of my reply giving the mathematical explanation.

To fit the most CW signals into the available spectrum, we need to limit the bandwidth taken
up by the signals. It is therefore useful to see how the energy in a dot or dash pulse is distributed
around the carrier frequency. Here I give some notes on how to make this analysis. The main
result is that the spectrum for many keying shapes is given by the product of the spectrum of a
square pulse times the spectrum of the slope of the rise and fall behavior of the pulse.

It seems from my experience reading morse, that the rise time should be the main factor in
producing code that can be read by ear comfortably. Since the rise time dominates the bandwidth
for the usual CW signal, the analysis shows that to get a nearly optimal bandwidth to rise time,
the keying pulse shape should have a gaussian slope.

In the next section I review basic Fourier analysis of amplitude modulation. I then calculate the
spectrum of a pulse with an exponentially shaped rise and fall as would be produced by simple
RC networks. The results suggest the more general analysis in the following section, with the
conclusion that a pulse with gaussian slope, i.e. error function rise and fall shapes, will have an
optimal bandwidth and rise time.

It seems likely that all of this would have been worked out by radio engineers in the early 1900s
when CW signals were first employed.

2 Fourier analysis for amplitude modulation

To analyze the spectrum generated by keying a transmitter let’s look at a single “dot.” If we
imagine we have a carrier with angular frequency ω0, and we amplitude modulate it with an
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envelop A(t), we get the amplitude of the signal from the transmitter is

f(t) = A(t) cos(ω0t) (1)

To calculate the energy spectrum we Fourier transform this to get

f̃(ω) =
∫ ∞
−∞

dtA(t) cos(ω0t)e
iωt =

1

2

[
Ã(ω − ω0) + Ã(ω + ω0)

]
(2)

where
Ã(ω) =

∫ ∞
−∞

dtA(t)eiωt . (3)

In the usual case, the modulation A(t) contains frequency components much smaller than the
carrier frequency. Therefore the Ã(ω + ω0) is negligible and can be ignored. The energy spectrum
of the amplitude modulated signal is therefore given by

P0(ω) =
1

4π
|Ã(ω − ω0)|2 (4)

and since A(t) is real, Ã(ω) = Ã∗(−ω), and the sidebands are symmetric around the carrier fre-
quency.

It is convenient to write
P (ω) = P0(ω + ω0) (5)

so that ω here is the frequency difference from the carrier, so that P (ω) gives the energy distribu-
tion for an angular frequency of ω from the carrier angular frequency. I will call P (ω) the sideband
energy density.

3 Application to Keying Bandwidth

To get an explicit result, I’ll assume an explicit form for a keying waveform. A simple form
where the Fourier transforms can be calculated analytically is the case where the wave builds up
exponentially (as in the usual RC circuit) to the carrier value when the key is pressed, and then
decays exponetially to zero when the key is released. That is

A(t) =


0 t < 0
1− e−t/τ 0 < t < T
(1− e−T/τ )e−(t−T )/τ t > T

(6)

where T is the keying pulse width and τ is its time constant. A plot of this waveform is shown in
figure 1 for the cases where τ is 4 milliseconds, and T is 20 and 50 milliseconds.

The fourier transform integral of the amplitude is straightforward and gives

Ã(ω) = −
[
eiωT − 1

] 1

iω(iωτ − 1)
(7)
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Figure 1: The exponential keying waveforms for a time constant τ of 4 milliseconds and durations
of 20 and 50 milliseconds. The 50 millisecond pulse begins at t = 100 milliseconds to separate it
from the 20 millisecond pulse.
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so that the sideband energy density) becomes

P (ω) =
1

π

sin2
(
ωT
2

)
ω2

1

(1 + ω2τ2)
. (8)

So the sideband energy density has two factors. If we measure it in dB relative to some fixed
value, we add the logarithms of the factors. The only dependence on T comes from the first
factor. The sin2 function is always less than or equal to 1, so this will subtract from the other factor
which only depends on τ the time constant which determines the rise time.

The main features of the sidebands will therefore be given by the rise time, while the length of
the pulse will modify those features somewhat.

Figures 2 and 3 show the energy density in dB referenced to the carrier energy density for
T of 20 milliseconds. The curves are plotted together in figure 4. Each curve is plotted versus
frequency f = ω/2π.

Notice that the differences between the 20 millisecond and 50 millisecond pulses are first the
energy near the carrier frequency is larger for the longer pulse as needed since it has about 2.5
times as much energy, and second the “ringing” has more oscillations for the longer pulse as
expected. The sidebands fall off 12 dB per octave once we are at frequencies beyond about 1/τ .

The effect of the keying speed on the bandwidth as long as the rise time is small compared to
pulse length is the change in shape of the central peak. It does get narrower for slower keying
and wider for faster keying, however, the keying speed does not effect the overall bandwidth.
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Figure 2: The sideband energy density for an exponential keying wave form with τ = 4 millisec-
onds and T of 20 milliseconds. The carrier energy density is set to 0 dB.
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Figure 3: The sideband energy density for an exponential keying wave form with τ = 4 millisec-
onds and T of 50 milliseconds. The scale is the same as figure 2.
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Figure 4: The plots of figures 2 and 3 combined.

-60

-50

-40

-30

-20

-10

0

10

-400 -200 0 200 400

dB

f(Hz)

T = 20 ms
T = 50 ms

4 General Pulse Shape

I can write a general pulse shape as

A(t) = Er(t+ T/2)− Ef(t− T/2) (9)

where Er and Ef describe the rising and falling edges of a pulse and are positive functions that
go to zero at large negative t and to 1 at large positive t. The Fourier transform of A is the sum of
the transforms of the two terms. If the rising and falling edges have the same form, we can write

A(t) = E(t+ T/2)−E(t− T/2) =
∫ ∞
−∞

dt′[δ(t+ T/2− t′)− δ(t− T/2− t′)]E(t′) (10)

and integrating by parts gives the result

A(t) = −
∫ ∞
−∞

dt′S(t− t′)dE(t′)

dt′
≡ −

∫ ∞
−∞

dt′S(t− t′)E′(t′) (11)

where S(t) is a square pulse of width T ,

S(t) =

{
1 |t| < T

2

0 |t| > T
2

(12)

and I have defined E′ to be the derivative of E.

Since A(t) is written as a convolution, its Fourier transform is now the product

Ã(ω) = S̃(ω)Ẽ′(ω) . (13)
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For keying wave forms this has the nice interpretation that the spectrum is given by the spectrum
of a square pulse of length T multiplied by a factor that is the Fourier transform of the slope of
the rise and fall wave form.

Except for an unimportant change of the zero of time, the exponential case calculated above can
be written as

E(t) =

{
0 t < 0
1− e−t/τ t > 0

(14)

The Fourier transforms of these are

S̃(ω) =
2 sin

(
ωT
2

)
ω

Ẽ′(ω) = − i

1 + iωτ
(15)

and the sideband energy density is exactly as before.

As we saw for the exponential case, the bandwidth is dominated by the rise and fall time.
Therefore it seems reasonable to try to optimize the rise and fall waveform of the keying pulse.
In terms of the function E′(t) whose integral is the rising and falling wave form, we want to
simultaneously make its width in real time and in frequency small. One measure of this is the
product of ∆ω and ∆t where they are defined as the variances in frequency and time

(∆t)2 =
∫ ∞
−∞

dt t2E′(t)−
[∫ ∞
−∞

dt tE′(t)
]2

(∆ω)2 =
∫ ∞
−∞

dω ω2Ẽ′(ω)−
[∫ ∞
−∞

dω ωẼ′(ω)
]2

. (16)

This problem is well known in optics and quantum mechanics where it goes by the name of the
minimum uncertainty wave-packet[1] . The solution is a gaussian

E′(t) =
1√
πτ2

e−
t2

τ2 . (17)

The Fourier transform of this gaussian is

Ẽ′(ω) = e−
ω2τ2

4. (18)

and the keying wave form with this g(t) has E(t) = 1/2[1 + erf(t/τ)]

A(t) =
1

2

[
erf

(
t+ T/2

τ

)
− erf

(
t− T/2

τ

)]
(19)

where erf(x) is the error function[2] defined to be

erf(x) =
2√
π

∫ x

0
due−u

2

. (20)

The differences in the keying wave form are shown by the turn on shape of the keying pulses in
figure 5.
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Figure 5: A comparison of the error function turn on with the exponential turn on, both for their
respective τ values of 4 milliseconds.
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Figure 6: The error function keying waveforms for τ of 4 milliseconds and durations of 20 and 50
milliseconds. The 50 millisecond pulse begins at t = 100 milliseconds to separate it from the 20
millisecond pulse.
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Figure 7: The sideband energy density for an error function keying wave form with τ = 4 mil-
liseconds and T of 20 milliseconds. The carrier energy density is set to 0 dB.
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In figure 6 I show the keying wave form for τ = 4 milliseconds and T = 20 and 50 milliseconds
as in figure 1 for both the exponential and optimized wave form. Notice that the abrupt changes
in the exponential form are absent from the error function form.

Figures 7 and 8 show the sideband energy density.

5 Extensions and Conclusions

The sideband energy density for many pulse shapes factorizes. The first of the two factors is
proportional to the Fourier transform squared of the square pulse and the second by the Fourier
transform squared of the slope of the rise and fall. The analysis can be easily generalized to an
arbitrary sequence of pulses. The Fourier transform of the single square pulse simply needs to be
changed to the Fourier transform of the sequence of square pulses. For a given rise time, the error
function shape for the rise and fall will attenuate unnecessary interference away from the carrier
frequency much better than exponential keying.
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Figure 8: The sideband energy density for an error function keying wave form with τ = 4 mil-
liseconds and T of 50 milliseconds. The scale is the same as figure 7.
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Figure 9: The plots of figures 7 and 8 combined.
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